Heat dissipation principle of wind turbine cooling system

During the operation of wind turbines, the heat generated by energy conversion and solar radiation needs to be dissipated to ensure the expected lifespan of the components inside the nacelle. We have developed a customized wind turbine cooling system for you, which effectively dissipates heat and keeps the equipment within its normal operating temperature range.
Radiators are typically in close contact with the heating components of wind turbines, transferring heat to the radiator body through molecular vibrations in the solid medium. Due to the excellent thermal conductivity of metals, they can quickly transfer heat from the heat source to the surface of the radiator to achieve cooling purposes.

We design a reasonable radiator structure for you, such as a plate fin radiator, which has high heat dissipation efficiency and compact structure, suitable for wind turbines with limited space. Welcome to consult us

Plate heat exchangers for waste heat recovery in the cement kiln industry

The cement industry is a high energy consuming industry, and cement kilns generate a large amount of waste heat during the production process. According to statistics, the waste heat from cement kilns accounts for 30% to 60% of the total energy consumption in cement production. Recycling and utilizing this waste heat can help save energy and reduce emissions, and promote the sustainable development of the cement industry. Among numerous waste heat recovery equipment, our plate heat exchanger has been widely used due to its efficient heat transfer performance.

Plate heat exchangers for waste heat recovery in the cement kiln industry

Product Structure
A plate heat exchanger is composed of a series of metal plates with certain corrugated shapes stacked together, forming narrow and winding channels between the plates. The edges of adjacent plates are sealed with sealing gaskets to ensure that the medium does not leak. Suitable materials can be selected based on the characteristics of different media and working temperatures. ​

Technical principles
Plate heat exchangers are based on the principle of wall to wall heat transfer, where two fluids of different temperatures flow on both sides of the plate and transfer heat through the plate. Usually, the counterflow heat transfer method is used, where two fluids flow in opposite directions inside the heat exchanger. This heat exchange method maintains a large temperature difference between the hot and cold fluids throughout the entire heat exchange process, thereby improving heat exchange efficiency and maximizing the recovery of waste heat. Compared with traditional shell and tube heat exchangers, the heat transfer coefficient of plate heat exchangers can be increased by 3-5 times.

Waste heat recovery plan
The high-temperature exhaust gas discharged from the cement kiln first enters the waste heat collection device and is transported to the plate heat exchanger through pipelines. In order to prevent dust in the exhaust gas from causing wear and blockage of the heat exchanger, dust removal equipment is usually installed before entering the heat exchanger. In the plate heat exchanger, high-temperature exhaust gas exchanges heat with low-temperature water or other heat media. After absorbing heat from exhaust gas, the temperature of the heat medium increases, which can be used to produce hot water, steam, or provide thermal energy for other processes. After heat exchange, the temperature of the exhaust gas decreases and meets the emission standards before being discharged into the atmosphere. ​

Drying tower heat recovery heat exchanger

The drying tower heat recovery heat exchanger is mainly used in the drying process of industries such as chemical, food, and pharmaceutical. Its purpose is to recover the heat from the drying exhaust gas, improve energy utilization efficiency, and reduce production costs.
Chemical industry: In the production process of chemical products, many processes require drying of materials, such as plastic pellets, rubber products, fertilizers, etc. The heat recovery heat exchanger of the drying tower can be installed in the exhaust emission system of the drying tower to recover the heat in the exhaust gas, which is used to preheat the air or materials entering the drying tower, thereby improving the drying efficiency and reducing energy consumption.
Food industry: In the process of food processing, such as grain drying, fruit drying, milk powder production, etc., the heat recovery heat exchanger in the drying tower can recover and utilize the heat in the drying exhaust gas, which not only saves energy but also reduces thermal pollution to the environment. Meanwhile, the recovered heat can be used for other processes in the food processing, such as preheating raw materials and sterilization.
Pharmaceutical industry: In drug production, high drying requirements are placed on drug raw materials and intermediates. The drying tower heat recovery heat exchanger can recover heat from the drying exhaust while ensuring drug quality, reducing energy consumption during the drying process and improving production efficiency.
Our drying tower heat recovery heat exchanger usually adopts a counter current plate heat exchanger, using hydrophilic aluminum foil material with good thermal conductivity and corrosion resistance. We will also optimize the design scheme of the heat exchanger for you, further improving the heat recovery efficiency and reducing operating costs.

Hydrophilic aluminum foil heat exchanger for offshore wind power

At present, most offshore wind farms use heat exchangers that not only meet basic heat dissipation needs, but also suffer from certain energy waste. The selection of some heat exchangers is too large, resulting in low fluid flow rate, decreased heat transfer efficiency, and increased pump power consumption during low load operation. Due to the complex and ever-changing marine environment, heat exchangers are susceptible to corrosion, scaling, and other issues, further reducing heat transfer performance and increasing energy consumption. ​

Hydrophilic aluminum foil heat exchanger for offshore wind power
Energy saving scheme design, optimizing heat exchanger selection
We will use advanced heat load calculation software to accurately calculate the required heat transfer based on the heating power of wind turbines under different operating conditions, combined with environmental conditions such as seawater temperature, air humidity, etc., to ensure that the selection of heat exchangers matches actual needs and avoid selecting too large or too small. Select a plate type with high heat transfer coefficient and low flow resistance based on the heat dissipation characteristics of offshore wind power. Improve heat exchange efficiency while reducing pump power consumption. Using hydrophilic aluminum foil, a new material with corrosion resistance, high strength, and good thermal conductivity, to manufacture plates can not only extend the service life of heat exchangers, reduce downtime and energy waste caused by corrosion and maintenance, but also improve heat transfer efficiency to a certain extent.

Application of Plate Heat Exchanger in Industrial Ventilation Field

Plate heat exchangers are mainly used for air heat exchange in the industrial ventilation industry to achieve functions such as air preheating, cooling, or energy recovery in ventilation systems. The following are their solutions and technical principles:

Application of Plate Heat Exchanger in Industrial Ventilation Field
Solution
Air air heat exchange: In some industrial places, such as large factories and workshops, it is necessary to preheat or cool the fresh air in the ventilation system. Plate heat exchangers can exchange heat between the discharged hot or cold air and the incoming fresh air, allowing the fresh air to reach a certain temperature before entering the room, thereby saving energy and improving the comfort of the indoor environment.
Energy recovery: For some industrial processes that generate a large amount of waste heat, such as metallurgy, chemical industry, etc., plate heat exchangers can be used to recover heat energy from exhaust gas and transfer it to fresh air or other media that need to be heated in the ventilation system. For example, high-temperature exhaust gas is heat exchanged with air in the ventilation system through a plate heat exchanger, and the air is heated and used for heating or other process in the workshop.
Technical principles
Structure and heat transfer method: Plate heat exchangers are composed of a series of metal plates with corrugated shapes, forming narrow channels between the plates. Cold and hot fluids flow in adjacent channels. When hot and cold fluids pass through a plate, heat is transferred through the plate. Due to the large surface area and good thermal conductivity of the plate, efficient heat exchange can occur between the hot and cold fluids.

How to choose a suitable heat exchanger in the field of food drying

How to choose a suitable heat exchanger in the field of food drying

The rotary heat exchanger, with its advanced technical principles and carefully designed solutions, has brought a new and efficient, energy-saving, and high-quality drying experience to the field of food drying, and is becoming the best choice for many food production enterprises to enhance their competitiveness. ​​

Selection design: Based on the specific needs of food drying, such as the type of food to be dried, production scale, drying process requirements, etc., accurately select the appropriate specifications of rotary heat exchangers. For example, for large-scale bread drying production lines, it is necessary to use large rotary heat exchangers with high processing air volume and high heat exchange efficiency; For small nut drying enterprises, small and compact heat exchangers are more suitable. ​
System integration: Cleverly integrate the rotary heat exchanger into the food drying system. Reasonably arrange heat exchangers between the exhaust gas discharge outlet and the fresh air inlet of the drying equipment to ensure that the exhaust gas can flow smoothly through the hot side of the impeller and the fresh air flows through the cold side. At the same time, through an intelligent control system, the speed of the rotary wheel and the flow rates of hot and cold fluids are accurately adjusted to meet the needs of different drying stages, ensuring the stability and efficiency of the drying process.
Energy saving and efficiency improvement: By recovering the heat from exhaust gas, the energy consumption during the drying process can be significantly reduced, reducing the use of fuel or electricity, lowering production costs, while improving drying efficiency and increasing output. ​
Improving quality: Stable drying temperature and humidity control helps ensure even drying of food, avoiding excessive or insufficient drying, enhancing the quality and taste of food, and reducing the rate of defective products. ​
Environmental sustainability: While reducing energy consumption, it also reduces the impact of exhaust emissions on the environment, which is in line with the production concept of green environmental protection. ​

Waste heat recovery system helps the leather industry save energy and reduce consumption

In the core processes of leather processing, including tanning, soaking, drying, dyeing, and finishing, traditional production techniques rely heavily on high energy consuming equipment such as steam boilers and thermal oil furnaces, resulting in energy waste rates of up to 40% -60%. Direct discharge of waste heat not only leads to low energy utilization efficiency, but also faces the risk of environmental fines.

Waste heat recovery system helps the leather industry save energy and reduce consumption
[Qi Yu] Waste Heat Recovery Solution
Zibo Qiyu has been deeply involved in the research and development of plate heat exchangers for 15 years. Based on the characteristics of leather technology, Qiyu has developed a three-level system of "pre recovery+deep recovery+intelligent management", achieving a waste heat utilization rate of ≥ 90% and reducing gas consumption by 40% -60%. working principle:
Using stainless steel plate heat exchangers, the waste heat (50-80 ℃) from tanning tanks and immersion tanks is recovered and used to preheat fresh water or chemical raw materials (such as tannin extract and dyes), thereby reducing steam consumption by 25% -35%. The reaction efficiency of preheated raw materials is increased by 20%, and the tanning cycle is shortened by 12%. Introducing waste heat pump technology to boost low-grade waste heat (30-50 ℃) to above 80 ℃ for constant temperature use in the dyeing workshop; Equipped with a digital management platform, real-time optimization of production line energy consumption models.
Our advantages:
We have jointly developed with the Department of Thermal Engineering at Tsinghua University and hold 12 patents for waste heat recovery;
Member unit of China Energy Conservation Association and Vice President unit of Shandong Energy Conservation and Environmental Protection Industry Association.
We will use plate heat exchangers to lock in every minute of heat energy, making green production within reach!
Please feel free to contact me at any time.

fresh air system for painting with heat recovery

fresh air system for painting with heat recovery

A fresh air system with heat recovery for painting applications is essential for maintaining air quality, temperature control, and energy efficiency in painting booths or industrial painting areas. These systems typically integrate:

Key Components

  1. Heat Recovery Ventilator (HRV) or Energy Recovery Ventilator (ERV) – Recovers heat (or cool energy) from exhaust air to pre-condition incoming fresh air.
  2. Filtration System – Removes contaminants, dust, and paint particles to ensure clean incoming air.
  3. Supply and Exhaust Fans – Maintain balanced airflow to create a controlled environment.
  4. Temperature and Humidity Control – Ensures proper drying and curing conditions for paint.
  5. Pressure Control System – Maintains positive or negative pressure to manage overspray and fumes.
fresh air system for painting with heat recovery

fresh air system for painting with heat recovery

Benefits

Energy Savings – Reduces heating/cooling costs by reusing heat from exhaust air.
Improved Air Quality – Removes harmful VOCs and airborne particles.
Better Paint Finish – Stable airflow minimizes defects like dust contamination.
Compliance with Regulations – Meets environmental and workplace safety standards.

Wind Generator Air to Air Indirect Cooling System

Wind Generator Air to Air Indirect Cooling System

Wind power system background

Wind power is a kind of clean energy, with the characteristics of renewable, pollution-free, large energy and broad prospects. The development of clean energy is the strategic choice of all countries in the world.

However, if the air is directly fed into the generator cabin for cooling, the dust and corrosive gas will be brought into the cabin (Especially wind turbines installed offshore).

Indirect cooling system solution

The indirect cooling method can make the air from inside and outside perform indirect heat exchange to achieve the effect of cooling the wind generator cabin without bringing dust and corrosive gases from outside into the cabin.

The main component of the indirect cooling system is the BXB plate heat exchanger. In the BXB plate heat exchanger, two channels are separated by aluminum foil. The air in the cabin is closed circulation, and the outside air is open circulation. The two airs are doing heat exchange. The air in the cabin transfers heat to the outside air, which reduces the temperature in the wind generator. In addition, the air inside and outside the cabin will not be mixed due to the isolation of aluminum foil, which prevents dust and corrosive gases outside the cabin from being brought into the cabin.

 

Cooling effect analysis

Taking a 2MW unit as an example, the motor's heat generation is 70kW, The circulating air volume in the engine room is 7000m3/h and the temperature is 85℃. The outside circulating air volume is 14000m3/h and the temperature is 40℃. Through the BXB1000-1000 plate heat exchanger, the air temperature in the cabin can be reduced to 47℃ and the heat dissipation capacity can reach 72kW. The relevant parameters are as follows:

Wind Generator Air to Air Indirect Cooling System(图1)

Introduction to indirect cooling system

Wind Generator Air to Air Indirect Cooling System(图2)

Wind Generator Air to Air Indirect Cooling System(图3)

Fresh air system for public places

Fresh air system for public places

At present, the utilization rate of air conditioning in public places, more and more people in a closed environment for a long time, because of the lack of the necessary air flow, indoor air quality is very poor, easy cause fatigue unwell and the spread of disease, therefore, measures must be taken for air exchange, using fresh air ventilation with heat recovery unit make the fresh air and exhaust air heat exchange equipment, can be very good to solve this problem.

Current status of air quality in public places:

1. Poor ventilation;

2. Large flow of people, more pollution sources, poor indoor air quality;

Measures:

The introduction of fresh air, "Public Health indicators and Limits requirements" for fresh air volume put forward clear requirements.

Causing problems:

Introduce a large number of fresh air, direct discharge of indoor air, resulting in a large waste of energy;

How to solve:

The fresh air ventilation equipment with heat recovery device makes heat exchange between fresh air and exhaust air, which not only effectively improves indoor air quality, but also solves a large amount of energy waste.

Schematic diagram of heat recovery fresh air ventilation equipment

Fresh air system for public places(图1)

New air volume recommended table for comfortable air-conditioned rooms

Fresh air system for public places(图2)

Fresh air system for public places(图3)

Need Help?